
QUANTUM COMPUTING CHASE SADRI

Quantum computing – A QPL approach to algorithms & fidelity
Revised 12/14/2021 11:01:00

Chase Sadri
University of Washington, Department of Applied Physics

3910 15th Ave NE, Seattle, WA USA 98195-1560

e-mail address: csadri@uw.edu

When people think, “The world of tomorrow,” Quantum computing is very often the technology at the

forefront of their mind. In recent history we have gained the ability to reliably and consistently harness

quantum mechanical properties of particles. Initializing, altering, and measuring these, “qubits,” has opened

the door to what very well might be the final frontier of the Information Era. Heralding in what we might

begin to refer to as, the Quantum Era. In the following we consider a variety of quantum programming

languages and analyze their performance and efficiency in the form of runtime and fidelity analysis. Running

simulations on physical quantum hardware provided by IonQ and IBM, we find satisfying and exciting results

for readily available quantum hardware.

Keywords: quantum computing,

PACS: ?

I. INTRODUCTION

 A fantastic byproduct of societal growth and human

evolution is the advent of technology. As we slowly make

our way towards technological zenith, our needs for

incredibly advanced supportive technologies continues to

grow. And, as the value of information continues to rise, we

continually need more and more advanced ways to protect

and secure our bits and bytes. Enter quantum cryptography

and key distribution.

RSA Encryption

Any proper discussion of quantum cryptography and

quantum key distribution should unequivocally begin with a

reasonable explanation/exploration of modern encryption

standards. This is where the Rivest-Shamir-Adleman (RSA)

algorithm comes into play. There are four major components

of the RSA algorithm that we should observe. These can be

summed up as key generation, key distribution, encryption

and decryption. See the following figure for a complete

overview of the steps behind distributing keys and

encrypting/decrypting. We will use familiar names for the

purpose of a reasonable working example.

It is important to note: RSA encryption is designed around

the computational difficulty of finding prime factors for an

incredibly large number. The most efficient classical

algorithms generally have a runtime between 𝑝𝑜𝑙𝑦(𝑁) and

2𝑝𝑜𝑙𝑦(𝑁). In other words, sub exponential runtime of the

order…

𝑂(𝑁𝑘) < 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔 𝑎𝑙𝑔𝑜 < 𝑂(𝑒𝑁).

Considering a standard RSA key of 255 digits, it would

take an incredible amount of time to algorithmically break

RSA encryption. [3]

1. Chase wants to send The Professor a message.

The Professor generates a public key by

choosing two prime integers 𝑝 and 𝑞 such that

𝑁 = 𝑝 ∗ 𝑞 along with some integer 𝑐 > 1 such

that 𝑐 has no common divisor with (𝑝 − 1) ∗
(𝑞 − 1)

2. The Professor generates a private key 𝑑 by

computing the inverse of c for mod

multiplication in the congruence relation…

𝑐 ∗ 𝑑 ≡ 1 mod (p − 1)(q − 1)

3. Chase encrypts his message 𝑚 with the

following formula…

𝑏 = (𝑚𝑐) mod 𝑁

4. The Professor decrypts Chase’s message by

computing…

𝑚 = (𝑏𝑑) mod 𝑁

Fig. 1: RSA Encryption Algorithm

Shor’s Algorithm

In the pursuit of greater security, some of the strongest

minds of our generation went to the task of finding means

with which to wrest control from the icy grips of Rivest,

Shamir, and Adleman. Enter: Peter Shor – a Caltech and MIT

graduate, Putnam Fellow, Macarthur Fellow, Dirac Medalist,

MIT Jr. Professor, and – most prominently – the father of

QUANTUM COMPUTING CHASE SADRI

Shor’s algorithm. We will begin to discuss the algorithm in

more detail in our attempts at implementation and runtime

analysis but it is of significant note that the algorithm of Shor

reduces our integer factorization runtime to…

𝑂((𝑙𝑜𝑔𝑁)2(𝑙𝑜𝑔𝑙𝑜𝑔𝑁)(𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑁)).

An efficiency increase of this magnitude has the power to

exponentially reduce the time it would take an individual to

break into an encrypted system. [1]

II. QUANTUM PROGRAMMING

As we further our understanding of quantum computers

and their implications, the need for further development of

related technologies increases almost daily. Of these, the

most notable for the avid and interested learner is the

quantum programming language (QPL). In general, QPLs

are development kits, APIs, and libraries that allow for

simulating quantum algorithms/circuits and/or running these

on a real physical quantum computer.

*These experiments were performed in an Integrated Development

Environment (IDE) provided by Spyder and NOT directly tied to

IBM Labs Experiment software.

A. Qiskit (IBM)
The Quantum Information Software Kit (QISKit) for

Quantum Computation is the lovechild of IBM Research and

a large community of individuals who believe in the

importance of making accessible resources for furthering the

growth of quantum computation. These efforts have

provided us with the ability to program quantum algorithms

and circuits that can then be run on quantum hardware of up

to 5000 qubits! Despite minor issues with fidelity and noise,

it is hard not to overstress the incredulous power of this

newfound gift of ready access to physical quantum

hardware.

Fig.2 (a): A 2 qubit, 2 gate quantum circuit for Bell State

generation

Fig. 2 (b): Associated histogram of output states to

demonstrate noise/fidelity of IBM quantum hardware

Running a premature error rate analysis with the following

formula for on several passes over the same IBM quantum

hardware (‘ibmq-manila’); we observe the following

IBM: 2 qubits, 2 gates

Mean accuracy 94.86%

Average queue +

runtime

~1900s

Average runtime 350s

B. Q# (Microsoft)
Similar to Qiskit, Q# is a tool that can be utilized to run

quantum algorithms (on quantum hardware or otherwise)

from the comfort of your personal computer. The exciting

nature of Q# is that it comes packaged as its own type of

programming language based on the syntax and style of

familiar languages like Python and C#. One major downside:

integrating Q# outside of Azure (i.e. in development

environments that we use very frequently) can be very

difficult and time consuming. Another thing to consider:

Algorithms run on ionq hardware are charged per run and

can rack up quite a bill after quite a few operations. For this

reason alone, we won’t have the ability to pursue Q#

integrated with ionq’s hardware too far beyond fidelity

analysis.

Simulating the same circuit as in Section A, we can follow

the same process for building a quantum circuit and

determining fidelity/runtime. In doing so, we generate the

following:

QUANTUM COMPUTING CHASE SADRI

Fig. 3: The same quantum circuit run on ionq hardware.

We observe noticeably higher fidelity and runtime with

these devices when stacked up against competitors.

This yields the following accuracy and runtime for

analysis/comparison

2 qubits, 2 gates

Mean accuracy 97.04%

Average queue +

runtime

323.3333 s

Although the jump in runtime and fidelity we observe

going from IBM hardware to ionq is somewhat small in this

particular example, it is very important to keep in mind that

this is an introduction to quantum programming and we are

implementing an algorithm that utilizes a meager 2 qubits

and 2 gates. As we scale to larger and more complex

algorithms that require a vast increase in qubit quantity along

with more advanced gating operations, we should note the

probability of runtime increasing and fidelity decreasing will

likely increase linearly at the very least when we consider

the difficulties of minimizing noise and environmental

coupling for larger qubit systems.

Interestingly enough, it is not considerably difficult to find

research wherein the investigators are interested in fidelity

of quantum hardware from industry titans. Some fellow

researchers from China’s University of Mining and

Technology have decided to ask similar questions about an

algorithm known as HHL. Simply put, this algorithm uses

quantum logic to solve systems of linear equations and, when

implemented properly, provides a runtime increase of the

following order:

𝑂(𝑁) → 𝑂(𝑙𝑜𝑔𝑁)

Considering the prevalence of need for linear equation

solvers in applied mathematics and computational science,

we should be quite interested in this algorithm. In fact, we

find it necessary to solve systems of linear equations in

nearly every type of programmable simulation!

Unfortunately, these authors [4] find quite a significant

decrease in algorithmic fidelity as they increase the

complexity of their systems of equations. Fidelity rapidly

drops from over ninety-nine percent to just around sixty-five.

Now, it appears as though IBM’s quantum simulation

software has vastly improved over the past year – running

HHL on the same complex system of equations gives a

fidelity of somewhere closer to seventy percent. My

approach differed from the authors in how we approached

designing the algorithm. They built their circuit by hand and

I simply fell back on using IBM’s HHL library.

C. Cirq (Google)
Cirq is the ideal tool for a Python developer that knows a

little something about quantum computation to get

familiarized with quantum programming. With friendly

documentation, strong APIs, built-in simulators, and access

to constructs that represent the constraints of a quantum

processor, we highly recommend Cirq to individuals that are

interested in quantum programming on a familiar language.

D. Runtime & Fidelity Analysis
Now that we’ve taken time to develop a strong familiarity

and bond with a few of the most prevalent quantum

programming tools available, it’s time to peer in and take the

time to perform some in-depth analysis on the fidelity and

runtime of our various resources. Before we even breach the

subject though, we shall be taking a moment to consider the

following: What is fidelity?

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦(𝜎, 𝜌) ≔ (𝑇𝑟𝑎𝑐𝑒 (√√𝜎𝜌√𝜎))

2

Eq. 1: Fidelity of 𝜎 and 𝜌: density matrices found by taking

the outer product of a state vector with itself. For our

purposes thus far, consider these to be the true Bell state

versus what we measure on quantum hardware. A Pythonic

approach follows below

I like to think of fidelity as a measurement of how noisy

our quantum circuit is. For the very simple example of Bell

State generation that we’ve been working with thus far

(Hadamard gate on qubit 1 followed by a CNOT gate to

generate an entangled state), we should expect to see an

approximately equal superposition of the |00> and |11>

states. However, we inevitably run into some difficulties

finding an equal superposition; this is okay! Due to the

probabilistic nature of particle states, we will almost always

observe a superposition that’s skewed in one direction or the

other. But, as a young quantum student, I was quite troubled

by the |01> and |10> states obtained in our preliminary

QUANTUM COMPUTING CHASE SADRI

analyses. That is, until I reviewed the earlier work of this

paper’s very author. [5]

Taking a step back to consider the computational

complexity of these systems and the depth of algorithm we

can run on a single IBM quantum computer brings forth not

only an appreciation for a place at the forefront of a quantum

developer’s toolbox, but a shocking realization that these

qubits are working incredibly hard. Sometimes, albeit not as

often as hoped, we like to take a step back and appreciate the

incredible applications of the very essential properties

observed by atomic particles. Quantum mechanics is a cruel

mistress and, in its nature, seems to disobey what we’d

consider is natural. However, we must be grateful to the

shoulders we stand on. For what are we if not quantum

people.

Following this short detour of appreciation for quantum,

let’s talk about coupling! As with most things, the qubits

behind quantum computation are closely tied to charged

particles. Seeing that gates required for executing quantum

algorithms operate very carefully on these particles, we

shouldn’t be surprised to learn that these particles are very

sensitive to fluctuations and external perturbations. As a

physicist, one might picture an atomic particle in some

external field that we will refer to as unavoidable for now.

Although, the magnitude of this field may not seem too

significant; the atomic mass of our particle makes it such that

there is a noticeable acceleration. A more directed

mathematical approach to coupling is provided for reference.

 Imagine a proton spinning around an electron (in the

electron’s frame of course), we would observe a magnetic

field, B

𝐵 =
μ0𝐼

2𝑟
 ,

generated by what is effectively a current loop in the form

of an orbiting proton. Simultaneously considering the

motion of the electron with the proton as our frame of rest,

we observe angular momentum, L

𝐿 = 𝑟𝑚𝑣 ,

that points in the same direction. Hence, we have…

𝐁 =
1

4𝜋𝜖0

𝑒

𝑚𝑐2𝑟2
𝐋

Pairing this with the magnetic dipole moment of the

electron produced by its own spin,

μ =
𝑒𝑔

2𝑚
 ,

we find that the magnetic moment experiences a torque

(τ) in the presence of an externally applied magnetic field:

𝛕 = 𝐁 × 𝛍

As a result of this torque, we can calculate the resulting

energy (in the case of a stationary proton) using the

following work-torque relationship

𝑊 = ∫ 𝛕
2𝜋

0

𝑑𝜃

Considering that total work done on a system is equivalent

to its energy, we observe the energy of a spin-orbit

coupled system to be represented by the following

𝐸 = 2𝜋𝐁 × 𝛍

Fig. 4: Spin-orbit coupling [5], [9]

Now that we have a reasonable understanding of one

possible source of fidelity, let’s consider another one. IBM

quantum hardware is all based on superconducting qubit

technology. By cooling a circuit to incredibly low

temperatures (𝑇𝐶), the electrical resistance of constituent

components drops abruptly to zero. [8] Superconducting

qubits can be defined as probability amplitudes associated

with Cooper pair density on either side of a Josephson

junction. Ideally, our temperature will remain below the

superconducting transition and we will observe limited, if

any, dissipation in the circuit. Nevertheless, repeated

simulations run on these devices will undoubtedly increase

their energy. For a superconducting qubit, this very well

could result in reaching gap energy – causing a broken

cooper pair and electron dissipation in the circuit. [8]

 In collecting data for Figure x, we wound up running the

same algorithm twice on a single computer. Curiously, the

second pass unfailingly resulted in a lower fidelity. Possible

explanations are the following:

1. Heat generated by quantum computation raises

energy to the point where Cooper pairs are broken.

2. IBM developers don’t like runtime experiments on

their quantum computers.

Now, moving along we would very much like to analyze

Ionq hardware. We will be doing so through the

implementation of a Microsoft Azure Quantum Workspace.

Ionq is heavily invested in trapped ion technology and

believes this to be the best route towards scalable, high-

fidelity readout. Without going into too much detail, I will

now make an attempt to offer a succinct explanation of

trapped ions as I understand them.

Prior to initializing trapped ions in the ground state, it is of

the utmost importance that we provide a sufficiently high

vacuum chamber to reduce fluctuations in the environment.

Cooling ions with lasers and trapping them in a potential well

has the effect of producing a discernible structure where each

QUANTUM COMPUTING CHASE SADRI

ion can be targeted individually for gating operations or

measurement.

And lastly, our pursuits through this section on

introduction to quantum programming yields the following

data for in-depth runtime and fidelity analysis

Fig. 5: Runtime & Fidelity Analysis.

Although Python plotting tends to be very disagreeable,

we have obtained the following very useful information for

simulating quantum circuits on real, physical hardware and

quantum simulators (notice 100% fidelity and fast runtime).

Since the charts are quite difficult to read, I’ll summarize the

findings here. Keep in mind, this research only applies to the

2 qubit, 2 gate Bell State construction circuit. We will require

further investigation to see how runtime changes for higher

complexity algorithms.

Most notably, we find the ionq-gpu backend in the running

for shortest runtime with far and away the highest fidelity

III. GROVER’S ALGORITHM

Having taken a spell to break away from the terribly

complex and live in the world of simple quantum algorithms

for a moment, it is high time that we jump back into the

driver’s seat and get going with increasingly complex

quantum algorithms. This is where Grover’s Algorithm

comes in.

A. Unstructured Search
Sometimes, it’s a fun activity to consider the average time

we spend with certain activities. Picture this, you wake up

and, all of a sudden, all of the books on your shelves have

rearranged themselves! Now you don’t know where to find

anything anymore . Frighteningly, if we were still living

in the classical age of information, we would have no choice

but to poke through an average of 𝑁/2 books with a

maximum of touching all of them. For the quantum believer

though, this is a thing of the past. Grover’s developments

have made it so that we don’t have to leaf through too many

more than √𝑁 books!

B. First attempts at Q# programming
Saving ourselves from what could turn out to be going

slightly overboard on runtime analysis, we will go no further

than consider the following Q# snippet to observe the

exciting applications of this new programming language

(that, to our chagrin, has less than desired when it comes to

documentation)

Fig. 6: Q# Implementation of Grover’s algorithm

IV. SHOR’S ALGORITHM

Despite touching Shor earlier on in this endeavor, I feel it

prudent to revisit and properly analyze the algorithm before

we start to wrap everything up. As a challenge, I took it upon

myself to attempt programming this algorithm in Q#. When

compared to the abundance of available resources for

programming Shor’s algorithm in Qiskit, this choice would

seem to make substantially less sense.

A. Quantum Fourier Transform
For this implementation, we heavily consulted the Le

Bellac text [8] and Microsoft documentation [10] to produce

a solution in a timely manner. Fortunately, our efforts

produced fruitful in building a generalized QFT for a qubit

register of any size.

QUANTUM COMPUTING CHASE SADRI

Fig. 7: Q# Implementation of the Quantum Fourier

Transform

In these pursuits, we find the implementation of the

Quantum Fourier Transform to be very straightforward and

efficient in Q#. Runtime on quantum hardware is incredibly

high and we are able to produce an equal superposition state

of a 3 bit quantum register in the range of 𝜇 − 𝑚 seconds.

B. Period Finding
As it stands Shor’s algorithm has proven to be the most

efficient algorithm for prime factorization that we know of.

We can accomplish this factorization of 𝑥 using a register|𝑥⟩

and a function 𝑓(𝑥) in a register |𝑧⟩.Through a Unitary

transformation 𝑈𝑓, we build an input register of the following

form.

|Ψ0⟩ =
1

√𝐾
∑|𝑥𝑜 + 𝑘𝑟⟩

𝐾−1

𝑘=0

Where 𝐾 ≅ 2𝑛/𝑟 and 𝑟 is the period of a function such

that 𝑓(𝑥 + 𝑝𝑟) = 𝑓(𝑥) when 𝑝 is an integer. After rigorous

computation and analysis, we find that determination of the

period is enough to crack RSA encryption.

V. CONCLUSIONS

Our efforts in the preceding sections have taken us from

analyzing the performance of a wide array of quantum

programming languages up to the implementation of highly

relevant algorithms that have the potential to change the way

we operate on an informational level. Since quantum

computing was theorized and introduced 20 years and some

change ago, the integration of quantum computing solutions

is finally beginning to make its way into the mainstream.

Since their inception, we have increased the quantity of

qubits in our registers 10-fold and its hard to imagine that

this exponential growth will slow down any time in the near

future.

1. ACKNOWLEDGEMENTS

I’d like to thank this department that I am a part of for

pushing me to the limit of my ability and my teachers for

fostering my appreciate for learning. In particular, The

Professor, Dr. Blinov has been incredibly supportive in my

academic career. The beautiful struggle we endure in lecture

– beginning to understand new material and on homework –

applying what we’ve learned; is unprecedented. My

classmates, peers, and mentors have been and continue to be

fundamental in my growth. As I grow, I will work harder to

meet up to the incredible examples set before me.

[1] Gidney, C. and Ekera, M. (2021) How to factor 2048 bit

RSA integers in 8 hours using 20 million noisy qubits.

Quantum 5, 433.

[2] Tianqi Zhou, Jian Shen, Xiong Li, Chen Wang, and Jun

Shen. (2017) Quantum Cryptography for the Future Internet

and the Security Analysis. Hindawi 2018.

[3] Ramakrishnan, G. (2019) Design and Verification of an

RSA Encryption Core. Thesis. Rochester Institute of

Technology.

[4] Wen Ji, Xiangdong Meng. (2021) Demonstration of

quantum linear equation solver on the IBM qiskit platform.

19th International Symposium on Distributed Computing

and Applications for Business Engineering and Science.

[5] Sadri, C. (2021) Qubits: Function, Fabrication and

Quantum Dots. PHYS 324 with The Professor.

[6] Qiskit Development Team. (2021) Qiskit

Documentation. Qiskit.

[7] Cirq Developers. (2021). Cirq (v0.12.0). Google.

https://doi.org/10.5281/zenodo.5182845

[8] Le Bellac, Michel. A Short Introduction to Quantum

Information and Quantum Computation. Cambridge

University Press, 2006.

[9] Griffiths, David. Introduction to Quantum Mechanics,

Third Edition. New York, Cambridge University Press,

2018.

[10] Microsoft. Tutorial: Implement Grover’s search

algorithm in Q#. Microsoft, 2021.

[11] cgranade. Searching with Grover’s Algorithm. Github

2021.

