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When people think, “The world of tomorrow,” Quantum computing is very often the technology at the 

forefront of their mind. In recent history we have gained the ability to reliably and consistently harness 

quantum mechanical properties of particles. Initializing, altering, and measuring these, “qubits,” has opened 

the door to what very well might be the final frontier of the Information Era. Heralding in what we might 

begin to refer to as, the Quantum Era. In the following we consider a variety of quantum programming 

languages and analyze their performance and efficiency in the form of runtime and fidelity analysis. Running 

simulations on physical quantum hardware provided by IonQ and IBM, we find satisfying and exciting results 

for readily available quantum hardware. 
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I. INTRODUCTION 

 A fantastic byproduct of societal growth and human 

evolution is the advent of technology. As we slowly make 

our way towards technological zenith, our needs for 

incredibly advanced supportive technologies continues to 

grow. And, as the value of information continues to rise, we 

continually need more and more advanced ways to protect 

and secure our bits and bytes. Enter quantum cryptography 

and key distribution. 

 

RSA Encryption 

Any proper discussion of quantum cryptography and 

quantum key distribution should unequivocally begin with a 

reasonable explanation/exploration of modern encryption 

standards. This is where the Rivest-Shamir-Adleman (RSA) 

algorithm comes into play. There are four major components 

of the RSA algorithm that we should observe. These can be 

summed up as key generation, key distribution, encryption 

and decryption. See the following figure for a complete 

overview of the steps behind distributing keys and 

encrypting/decrypting. We will use familiar names for the 

purpose of a reasonable working example. 

It is important to note: RSA encryption is designed around 

the computational difficulty of finding prime factors for an 

incredibly large number. The most efficient classical 

algorithms generally have a runtime between 𝑝𝑜𝑙𝑦(𝑁) and 

2𝑝𝑜𝑙𝑦(𝑁). In other words, sub exponential runtime of the 

order… 

 

𝑂(𝑁𝑘) < 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔 𝑎𝑙𝑔𝑜 < 𝑂(𝑒𝑁). 

 

Considering a standard RSA key of 255 digits, it would 

take an incredible amount of time to algorithmically break 

RSA encryption. [3] 

 

1. Chase wants to send The Professor a message. 

The Professor generates a public key by 

choosing two prime integers 𝑝 and 𝑞 such that 

𝑁 = 𝑝 ∗ 𝑞 along with some integer 𝑐 > 1 such 

that 𝑐 has no common divisor with (𝑝 − 1) ∗
(𝑞 − 1) 

2. The Professor generates a private key 𝑑 by 

computing the inverse of c for mod 

multiplication in the congruence relation…  

𝑐 ∗ 𝑑 ≡ 1  mod (p − 1)(q − 1) 

3. Chase encrypts his message 𝑚 with the 

following formula…  

𝑏 = (𝑚𝑐)  mod 𝑁 

4. The Professor decrypts Chase’s message by 

computing…  

𝑚 = (𝑏𝑑)  mod 𝑁 
  

Fig. 1: RSA Encryption Algorithm 

 

Shor’s Algorithm 

In the pursuit of greater security, some of the strongest 

minds of our generation went to the task of finding means 

with which to wrest control from the icy grips of Rivest, 

Shamir, and Adleman. Enter: Peter Shor – a Caltech and MIT 

graduate, Putnam Fellow, Macarthur Fellow, Dirac Medalist, 

MIT Jr. Professor, and – most prominently – the father of 
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Shor’s algorithm. We will begin to discuss the algorithm in 

more detail in our attempts at implementation and runtime 

analysis but it is of significant note that the algorithm of Shor 

reduces our integer factorization runtime to…  

 

𝑂((𝑙𝑜𝑔𝑁)2(𝑙𝑜𝑔𝑙𝑜𝑔𝑁)(𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑁)). 

 

An efficiency increase of this magnitude has the power to 

exponentially reduce the time it would take an individual to 

break into an encrypted system. [1] 

II. QUANTUM PROGRAMMING 

As we further our understanding of quantum computers 

and their implications, the need for further development of 

related technologies increases almost daily. Of these, the 

most notable for the avid and interested learner is the 

quantum programming language (QPL). In general, QPLs 

are development kits, APIs, and libraries that allow for 

simulating quantum algorithms/circuits and/or running these 

on a real physical quantum computer. 

 
*These experiments were performed in an Integrated Development 

Environment (IDE) provided by Spyder and NOT directly tied to 

IBM Labs Experiment software. 

 

 

A. Qiskit (IBM) 
The Quantum Information Software Kit (QISKit) for 

Quantum Computation is the lovechild of IBM Research and 

a large community of individuals who believe in the 

importance of making accessible resources for furthering the 

growth of quantum computation. These efforts have 

provided us with the ability to program quantum algorithms 

and circuits that can then be run on quantum hardware of up 

to 5000 qubits! Despite minor issues with fidelity and noise, 

it is hard not to overstress the incredulous power of this 

newfound gift of ready access to physical quantum 

hardware. 

 

 
Fig.2 (a): A 2 qubit, 2 gate quantum circuit for Bell State 

generation 

 

 
Fig. 2 (b): Associated histogram of output states to 

demonstrate noise/fidelity of IBM quantum hardware 

 

Running a premature error rate analysis with the following 

formula for on several passes over the same IBM quantum 

hardware (‘ibmq-manila’); we observe the following 

 

IBM: 2 qubits, 2 gates 

Mean accuracy 94.86% 

Average queue + 

runtime 

~1900s 

Average runtime 350s 
 

B. Q# (Microsoft) 
Similar to Qiskit, Q# is a tool that can be utilized to run 

quantum algorithms (on quantum hardware or otherwise) 

from the comfort of your personal computer. The exciting 

nature of Q# is that it comes packaged as its own type of 

programming language based on the syntax and style of 

familiar languages like Python and C#. One major downside: 

integrating Q# outside of Azure (i.e. in development 

environments that we use very frequently) can be very 

difficult and time consuming. Another thing to consider: 

Algorithms run on ionq hardware are charged per run and 

can rack up quite a bill after quite a few operations. For this 

reason alone, we won’t have the ability to pursue Q# 

integrated with ionq’s hardware too far beyond fidelity 

analysis. 

Simulating the same circuit as in Section A, we can follow 

the same process for building a quantum circuit and 

determining fidelity/runtime. In doing so, we generate the 

following: 
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Fig. 3: The same quantum circuit run on ionq hardware. 

We observe noticeably higher fidelity and runtime with 

these devices when stacked up against competitors. 

 

This yields the following accuracy and runtime for 

analysis/comparison 

 

2 qubits, 2 gates 

Mean accuracy 97.04% 

Average queue + 

runtime 

323.3333 s 

 

Although the jump in runtime and fidelity we observe 

going from IBM hardware to ionq is somewhat small in this 

particular example, it is very important to keep in mind that 

this is an introduction to quantum programming and we are 

implementing an algorithm that utilizes a meager 2 qubits 

and 2 gates. As we scale to larger and more complex 

algorithms that require a vast increase in qubit quantity along 

with more advanced gating operations, we should note the 

probability of runtime increasing and fidelity decreasing will 

likely increase linearly at the very least when we consider 

the difficulties of minimizing noise and environmental 

coupling for larger qubit systems. 

Interestingly enough, it is not considerably difficult to find 

research wherein the investigators are interested in fidelity 

of quantum hardware from industry titans. Some fellow 

researchers from China’s University of Mining and 

Technology have decided to ask similar questions about an 

algorithm known as HHL. Simply put, this algorithm uses 

quantum logic to solve systems of linear equations and, when 

implemented properly, provides a runtime increase of the 

following order: 

 

𝑂(𝑁) → 𝑂(𝑙𝑜𝑔𝑁) 

 

Considering the prevalence of need for linear equation 

solvers in applied mathematics and computational science, 

we should be quite interested in this algorithm. In fact, we 

find it necessary to solve systems of linear equations in 

nearly every type of programmable simulation! 

Unfortunately, these authors [4] find quite a significant 

decrease in algorithmic fidelity as they increase the 

complexity of their systems of equations. Fidelity rapidly 

drops from over ninety-nine percent to just around sixty-five. 

Now, it appears as though IBM’s quantum simulation 

software has vastly improved over the past year – running 

HHL on the same complex system of equations gives a 

fidelity of somewhere closer to seventy percent. My 

approach differed from the authors in how we approached 

designing the algorithm. They built their circuit by hand and 

I simply fell back on using IBM’s HHL library. 

 

C. Cirq (Google) 
Cirq is the ideal tool for a Python developer that knows a 

little something about quantum computation to get 

familiarized with quantum programming. With friendly 

documentation, strong APIs, built-in simulators, and access 

to constructs that represent the constraints of a quantum 

processor, we highly recommend Cirq to individuals that are 

interested in quantum programming on a familiar language. 

 

D. Runtime & Fidelity Analysis 
Now that we’ve taken time to develop a strong familiarity 

and bond with a few of the most prevalent quantum 

programming tools available, it’s time to peer in and take the 

time to perform some in-depth analysis on the fidelity and 

runtime of our various resources. Before we even breach the 

subject though, we shall be taking a moment to consider the 

following: What is fidelity? 

 

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦(𝜎, 𝜌) ≔ (𝑇𝑟𝑎𝑐𝑒 (√√𝜎𝜌√𝜎))

2

 

Eq. 1: Fidelity of 𝜎 and 𝜌: density matrices found by taking 

the outer product of a state vector with itself. For our 

purposes thus far, consider these to be the true Bell state 

versus what we measure on quantum hardware. A Pythonic 

approach follows below 

 

 
 

I like to think of fidelity as a measurement of how noisy 

our quantum circuit is. For the very simple example of Bell 

State generation that we’ve been working with thus far 

(Hadamard gate on qubit 1 followed by a CNOT gate to 

generate an entangled state), we should expect to see an 

approximately equal superposition of the |00> and |11> 

states. However, we inevitably run into some difficulties 

finding an equal superposition; this is okay! Due to the 

probabilistic nature of particle states, we will almost always 

observe a superposition that’s skewed in one direction or the 

other. But, as a young quantum student, I was quite troubled 

by the |01> and |10> states obtained in our preliminary 
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analyses. That is, until I reviewed the earlier work of this 

paper’s very author. [5] 

Taking a step back to consider the computational 

complexity of these systems and the depth of algorithm we 

can run on a single IBM quantum computer brings forth not 

only an appreciation for a place at the forefront of a quantum 

developer’s toolbox, but a shocking realization that these 

qubits are working incredibly hard. Sometimes, albeit not as 

often as hoped, we like to take a step back and appreciate the 

incredible applications of the very essential properties 

observed by atomic particles. Quantum mechanics is a cruel 

mistress and, in its nature, seems to disobey what we’d 

consider is natural. However, we must be grateful to the 

shoulders we stand on. For what are we if not quantum 

people.  

Following this short detour of appreciation for quantum, 

let’s talk about coupling! As with most things, the qubits 

behind quantum computation are closely tied to charged 

particles. Seeing that gates required for executing quantum 

algorithms operate very carefully on these particles, we 

shouldn’t be surprised to learn that these particles are very 

sensitive to fluctuations and external perturbations. As a 

physicist, one might picture an atomic particle in some 

external field that we will refer to as unavoidable for now. 

Although, the magnitude of this field may not seem too 

significant; the atomic mass of our particle makes it such that 

there is a noticeable acceleration. A more directed 

mathematical approach to coupling is provided for reference. 

 

   Imagine a proton spinning around an electron (in the 

electron’s frame of course), we would observe a magnetic 

field, B 

 

𝐵 =
μ0𝐼

2𝑟
 , 

 

generated by what is effectively a current loop in the form 

of an orbiting proton. Simultaneously considering the 

motion of the electron with the proton as our frame of rest, 

we observe angular momentum, L 

 

𝐿 = 𝑟𝑚𝑣 , 
 

that points in the same direction. Hence, we have… 

 

𝐁 =
1

4𝜋𝜖0

𝑒

𝑚𝑐2𝑟2
𝐋 

 

Pairing this with the magnetic dipole moment of the 

electron produced by its own spin, 

 

μ =
𝑒𝑔

2𝑚
 , 

 

we find that the magnetic moment experiences a torque 

(τ) in the presence of an externally applied magnetic field: 

 

𝛕 = 𝐁 × 𝛍 

 

As a result of this torque, we can calculate the resulting 

energy (in the case of a stationary proton) using the 

following work-torque relationship 

 

𝑊 = ∫ 𝛕
2𝜋

0

𝑑𝜃 

 

Considering that total work done on a system is equivalent 

to its energy, we observe the energy of a spin-orbit 

coupled system to be represented by the following 

 

𝐸 = 2𝜋𝐁 × 𝛍 

 

Fig. 4: Spin-orbit coupling [5], [9] 

 

Now that we have a reasonable understanding of one 

possible source of fidelity, let’s consider another one. IBM 

quantum hardware is all based on superconducting qubit 

technology. By cooling a circuit to incredibly low 

temperatures (𝑇𝐶), the electrical resistance of constituent 

components drops abruptly to zero. [8] Superconducting 

qubits can be defined as probability amplitudes associated 

with Cooper pair density on either side of a Josephson 

junction. Ideally, our temperature will remain below the 

superconducting transition and we will observe limited, if 

any, dissipation in the circuit. Nevertheless, repeated 

simulations run on these devices will undoubtedly increase 

their energy. For a superconducting qubit, this very well 

could result in reaching gap energy – causing a broken 

cooper pair and electron dissipation in the circuit. [8] 

 In collecting data for Figure x, we wound up running the 

same algorithm twice on a single computer. Curiously, the 

second pass unfailingly resulted in a lower fidelity. Possible 

explanations are the following: 
 

1. Heat generated by quantum computation raises 

energy to the point where Cooper pairs are broken.  

2. IBM developers don’t like runtime experiments on 

their quantum computers. 

 

Now, moving along we would very much like to analyze 

Ionq hardware. We will be doing so through the 

implementation of a Microsoft Azure Quantum Workspace. 

Ionq is heavily invested in trapped ion technology and 

believes this to be the best route towards scalable, high-

fidelity readout. Without going into too much detail, I will 

now make an attempt to offer a succinct explanation of 

trapped ions as I understand them. 

Prior to initializing trapped ions in the ground state, it is of 

the utmost importance that we provide a sufficiently high 

vacuum chamber to reduce fluctuations in the environment. 

Cooling ions with lasers and trapping them in a potential well 

has the effect of producing a discernible structure where each 
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ion can be targeted individually for gating operations or 

measurement. 

And lastly, our pursuits through this section on 

introduction to quantum programming yields the following 

data for in-depth runtime and fidelity analysis 

 

 
Fig. 5: Runtime & Fidelity Analysis. 

 

Although Python plotting tends to be very disagreeable, 

we have obtained the following very useful information for 

simulating quantum circuits on real, physical hardware and 

quantum simulators (notice 100% fidelity and fast runtime). 

Since the charts are quite difficult to read, I’ll summarize the 

findings here. Keep in mind, this research only applies to the 

2 qubit, 2 gate Bell State construction circuit. We will require 

further investigation to see how runtime changes for higher 

complexity algorithms. 

Most notably, we find the ionq-gpu backend in the running 

for shortest runtime with far and away the highest fidelity 

III. GROVER’S ALGORITHM 

Having taken a spell to break away from the terribly 

complex and live in the world of simple quantum algorithms 

for a moment, it is high time that we jump back into the 

driver’s seat and get going with increasingly complex 

quantum algorithms. This is where Grover’s Algorithm 

comes in. 

 

A. Unstructured Search 
Sometimes, it’s a fun activity to consider the average time 

we spend with certain activities. Picture this, you wake up 

and, all of a sudden, all of the books on your shelves have 

rearranged themselves! Now you don’t know where to find 

anything anymore     . Frighteningly, if we were still living 

in the classical age of information, we would have no choice 

but to poke through an average of 𝑁/2 books with a 

maximum of touching all of them. For the quantum believer 

though, this is a thing of the past. Grover’s developments 

have made it so that we don’t have to leaf through too many 

more than √𝑁 books! 

 

B. First attempts at Q# programming 
Saving ourselves from what could turn out to be going 

slightly overboard on runtime analysis, we will go no further 

than consider the following Q# snippet to observe the 

exciting applications of this new programming language 

(that, to our chagrin, has less than desired when it comes to 

documentation)  

 

 
Fig. 6: Q# Implementation of Grover’s algorithm 

IV. SHOR’S ALGORITHM 

Despite touching Shor earlier on in this endeavor, I feel it 

prudent to revisit and properly analyze the algorithm before 

we start to wrap everything up. As a challenge, I took it upon 

myself to attempt programming this algorithm in Q#. When 

compared to the abundance of available resources for 

programming Shor’s algorithm in Qiskit, this choice would 

seem to make substantially less sense. 

 

A. Quantum Fourier Transform 
For this implementation, we heavily consulted the Le 

Bellac text [8] and Microsoft documentation [10] to produce 

a solution in a timely manner. Fortunately, our efforts 

produced fruitful in building a generalized QFT for a qubit 

register of any size. 
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Fig. 7: Q# Implementation of the Quantum Fourier 

Transform 

 

In these pursuits, we find the implementation of the 

Quantum Fourier Transform to be very straightforward and 

efficient in Q#. Runtime on quantum hardware is incredibly 

high and we are able to produce an equal superposition state 

of a 3 bit quantum register in the range of 𝜇 − 𝑚 seconds. 

 

B. Period Finding 
As it stands Shor’s algorithm has proven to be the most 

efficient algorithm for prime factorization that we know of. 

We can accomplish this factorization of 𝑥 using a register|𝑥⟩  

and a function 𝑓(𝑥) in a register |𝑧⟩.Through a Unitary 

transformation 𝑈𝑓, we build an input register of the following 

form. 

|Ψ0⟩ =
1

√𝐾
∑|𝑥𝑜 + 𝑘𝑟⟩

𝐾−1

𝑘=0

 

 

Where 𝐾 ≅ 2𝑛/𝑟 and 𝑟 is the period of a function such 

that 𝑓(𝑥 + 𝑝𝑟) = 𝑓(𝑥) when 𝑝 is an integer. After rigorous 

computation and analysis, we find that determination of the 

period is enough to crack RSA encryption. 

V. CONCLUSIONS 

Our efforts in the preceding sections have taken us from 

analyzing the performance of a wide array of quantum 

programming languages up to the implementation of highly 

relevant algorithms that have the potential to change the way 

we operate on an informational level. Since quantum 

computing was theorized and introduced 20 years and some 

change ago, the integration of quantum computing solutions 

is finally beginning to make its way into the mainstream. 

Since their inception, we have increased the quantity of 

qubits in our registers 10-fold and its hard to imagine that 

this exponential growth will slow down any time in the near 

future. 
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